Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://dspace.oneu.edu.ua/jspui/handle/123456789/17107
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorОрлов, Є.В.-
dc.contributor.authorКривошеїна, Є.О.-
dc.contributor.authorСіренко, А.О.-
dc.contributor.authorOrlov, E.-
dc.contributor.authorKrivosheina, E.-
dc.contributor.authorSirenko, A.-
dc.date.accessioned2024-02-05T19:48:39Z-
dc.date.available2024-02-05T19:48:39Z-
dc.date.issued2023-
dc.identifierУДК311.21; 303.72-
dc.identifierJEL Classification: C810; C820; C870-
dc.identifier.citationОрлов Є. В. Аналіз великих об’ємів даних та їх візуалізація в R / Є. В. Орлов, Є. О. Кривошеїна, А. О. Сіренко // Науковий вісник Одеського національного економічного університету: збірник наукових праць; за ред.: В.В. Коваленко (голов. ред.). (ISSN 2409-9260). – Одеса: Одеський національний економічний університет, 2023. – № 9 (310). – С. 37-43.en_US
dc.identifier.urihttp://dspace.oneu.edu.ua/jspui/handle/123456789/17107-
dc.description.abstractСтаття присвячена дослідженню методів та інструментів для аналізу та візуалізації великих об'ємів даних у R. Метою статті є обґрунтування вибору методів аналізу великих обсягів даних із використанням середовища програмування R, а також можливості їх візуалізації. Описано різні підходи до обробки великих наборів даних в R, такі як використання пакетів для роботи з великими об'ємами даних, інструментів візуалізації та аналізу даних. Наведено приклади використання середовища програмування R для комплексного аналізу даних великих компаній. Платформи соціальних медіа, такі як Twitter, Facebook і Instagram, генерують великі обсяги даних, які можна використовувати для аналізу настроїв користувачів, дослідження тенденцій і визначення реакції на новини та події.en_US
dc.description.abstractThe article is devoted to the study of methods and tools for analysis and visualization of large volumes of data in the R programming environment. One of the unsolved problems in the analysis of large volumes of data and their visualization in R is the need to use specialized tools for working with large volumes of data, which can be quite difficult to master. With large volumes of data, it is important to have effective visualization tools to identify patterns and dependencies. However, automating this process remains a challenge for many developers. There is also the issue of visualizing the results, as visualizing large amounts of data can be a daunting task. Also, some graphs and charts can be too difficult to interpret and understand. Various approaches to handling large data sets in R are described, such as the use of big data packages, visualization tools, and data analysis tools. Examples of using the R programming environment for complex data analysis of large companies are given. An example of analyzing large volumes of data in R is analyzing social media data. Social media platforms such as Twitter, Facebook and Instagram generate large amounts of data that can be used to analyze user sentiment, research trends and determine reactions to news and events. To analyze social media data, you can use the R package "twitteR", which allows you to retrieve and process data from the Twitter API. For example, you can use this package to collect and analyze tweets from specific hashtags or accounts to determine user sentiment and trends. By understanding the characteristics of shopping center visitors, Uber and Twitter users, owners and management companies can make decisions about optimizing the center's operation and improving the level of service. Key words: large volumes of data, R programming environment, statistical analysis, data visualization.-
dc.language.isouken_US
dc.publisherОдеський національний економічний університетen_US
dc.subjectвеликі об’єми данихen_US
dc.subjectсередовище програмування Ren_US
dc.subjectстатистичний аналізen_US
dc.subjectвізуалізація данихen_US
dc.subjectlarge volumes of dataen_US
dc.subjectR programming environmenten_US
dc.subjectstatistical analysisen_US
dc.subjectdata visualizationen_US
dc.titleАналіз великих об’ємів даних та їх візуалізація в Ren_US
dc.title.alternativeAnalysis of large amount of data and its visualization in Ren_US
dc.typeArticleen_US
dc.identifier.doiDOI:10.32680/2409-9260-2023-9-310-37-43-
dc.identifier.orcid0000-0002-9212-9973-
Розташовується у зібраннях:Кафедра статистики та математичних методів в економіці
№ 9 (310)

Файли цього матеріалу:
Файл Опис РозмірФормат 
37-43.pdf657,2 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.